
0018-9162/99/$10.00 © 1999 IEEE2 Computer

T
he demand for educational software is grow-
ing exponentially with the surge of interest
in educational reform, the Internet, and dis-
tance learning. Educational applications
must be very flexible because curricula and

teaching styles vary tremendously among institutions,
locations, and even among instructors at the same
institution.

To meet these needs, a wide array of small-scale,
casual developers at universities, research labs, and
small businesses develop educational software, and no
dominant solution or supplier has emerged.1 In this
market, smaller suppliers often cannot produce full
solutions without depending on the capabilities of
other vendors. For example, producing software for
a grade 6-8 mathematics curriculum might require
more than 30 different tools, such as random number
spinners, dice, tables, graphs, spreadsheets, and note-
books. As a consequence, small educational software
publishers must either limit their product to a partic-
ular topic in the curriculum, or they must team with
others who have already built some of the compo-
nents. Because narrowly limited products are not very
desirable in education, small developers are recogniz-
ing that they need a standard, common platform.

These conditions are driving the increased use of
components in educational applications. An evolving
educational-component market combines the efforts
of fixed-component developers and educators to meet
the tremendous demand for customized learning mate-
rials.2 Indeed, for the educational software market to
survive, component methodologies appear to be a
necessity, not a luxury.3

Until now, components have remained largely the
province of full-time programmers. However, com-
ponent technologies are likely to expand toward an

audience that is considerably less technical and more
domain-oriented—users whose job descriptions typi-
cally don’t include software development. Thus, the
lessons we’ve learned about how to collaborate with
nontechnical domain experts on educational software
could become increasingly important to developing
good software for any application domain.

SPECIAL NEEDS OF EDUCATIONAL COMPONENTS
In contrast to more conventional uses of compo-

nents, educational components require attention to
their cognitive characteristics rather than just the
purely computational ones.4 Critics of component
engineering argue that component reuse has overem-
phasized the technical attributes of components at the
expense of the cognitive aspects of their use. Cognitive
aspects include the component’s fit with the mental
model and thought processes of the secondary
designer—the person who uses the components to
build an application.

Today’s educational components are explicitly ori-
ented toward learning and often only secondarily ori-
ented toward student collaboration. In the future,
helping application users learn and collaborate while
they work will likely be an increasingly important engi-
neering objective across all component domains.

Finally, educational components are often designed
for interaction: Learning occurs because of how stu-
dents interact with screen elements.5 In particular, edu-
cators place high value on constructivism, a
philosophy of learning through engaged inquiry. This
philosophy in turn favors a component system that
students and educators can manipulate as they learn;
such manipulation is part of the learning system and
demands continual support.6 Components could be
helpful in providing that support. Thus, the argument

Having component developers collaborate with domain experts to build
applications may be the future of software development. A group of
component developers discuss what they’ve learned in collaborating with
educators on educational software components.

Cover Feature

Developing
Educational
Software Components

Jeremy
Roschelle
Chris
DiGiano
SRI International

Manolis
Koutlis
Computer
Technology
Institute,
Greece

Alexander
Repenning
Jonathan
Phillips
University of
Colorado,
Boulder

Nicholas
Jackiw
KCP
Technologies

Dan Suthers
University of
Hawaii at
Manoa

Co
ve

r F
ea

tu
re

for writing educational software with components
rests on a great deal more than mere efficiency in
building the initial applications.

We have been working on educational components
for several years in related commercial and nonprofit
projects, both within the US and internationally. Table
1 describes these projects. Over the past year, we have
been identifying ways to work more closely together.
As part of this process, we have collectively identified
commonalities in our evolving approaches to educa-
tional components.

COMMON DILEMMA
Despite the availability of many software packages

with excellent authoring capabilities, our experiences
with both commercial products and research proto-
types suggest that very few educators (estimated at
less than one percent) will ever write a reusable les-
son.

This fact raises the dilemma of who the audience
for educational software components really is: Are
components targeted primarily at traditional software
developers or at shifting the production burden from
developers to educators? Neither answer is sufficient:
Developers lack the contact hours with students to
directly create excellent educational software, and
there are few signs that educators will ever become
efficient producers of educational software. Thus, it
may be better to ask, “How can a component strategy
bring software development and curriculum-author-
ing expertise more closely together?”

In answering this question, we first envisioned a
technological and social climate that would enable

technical researchers and nontechnical educators to
collaborate effectively.

OUR VISION
In the future, ideas for specific educational activities

will be turned into software as easily as writing a doc-
ument: The development process will be replaced by
a process of editing, creating, and manipulating
“editable applications.” Such applications will con-
sist of high-level computational objects that are avail-
able as tangible building blocks. Domain-specific but
pedagogy-neutral components will decouple the edu-
cational value of end products from their engineering.

Standards—technical, educational, curricular, and
conceptual—will guarantee plug-and-play operation
among components, independent of origin or type.
Incorporating new components in specific applica-
tions will be as simple as copying and pasting images
from various sources into a document. Educators will
have many choices in the educational-component
market, just as they do when choosing a home stereo
system, where they can choose the modules they pre-
fer from various manufacturers.

Intercomponent synergy combined with an educa-
tor’s creativity and imagination will result in func-
tional configurations that were not possible before or
weren’t anticipated by the components’ developers.
This will provide the unique opportunity to combine
different genres of learning tools that are more valu-
able in combination than individually. Such a combi-
nation of tools will more effectively implement
cross-subject, holistic learning approaches. For exam-
ple, they could present a subject like the pyramids of

September 1999 3

Table 1. Educational-software projects that are the basis for this article.

Project or product Developer and organization Description

E-Slate Manolis Koutlis E-Slate is a component-based environment for constructing
http://e-slate.cti.gr Computer Technology Institute, Greece Internet-aware learning activities for exploration. In addition, it

provides a platform for the development of educational compo-
nent libraries.

ESCOT Jeremy Roschelle, Chris DiGiano, Roy Pea, ESCOT is a testbed that seeks to enable interoperability and
http://www.escot.org and Jim Kaput reuse of educational software components for middle-school

SRI International mathematics.
AgentSheets Alexander Repenning and Jonathan Phillips AgentSheets is an agent-based authoring environment
http://www.agentsheets.com University of Colorado, Boulder for educators to build interactive simulations that

can be turned into Java applets and JavaBeans.
JavaSketchpad Nicholas Jackiw JavaSketchpad is a Web-enabled incarnation of The
http://www.keypress.com/ KCP Technologies Geometer’s Sketchpad, a market-leading mathematics
sketchpad/java_gsp exploration tool for grades six through 14.

Belvedere Dan Suthers Belvedere enables students to construct diagrams of evidential
http://lilt.ics.hawaii.edu University of Hawaii at Manoa relationships between hypotheses and empirical evidence, while

receiving guidance from an automated advisor and collaborating
` via a network.

4 Computer

Egypt from a combined historical, geometrical, geo-
graphical, and cultural perspective.

Digital libraries of interoperable educational compo-
nents that are categorized and arranged for easy search
and access will be available via the Web. Such libraries
could include components for a multitude of functions,
such as graphing, mapping, agents, simulators and sim-
ulations, statistics, and database manipulation. New
components and component-based constructions will
be seamlessly published and shared among educators
through common e-mail or Web access.

Independent developers, small research teams, or
software companies will focus on their domains of
expertise, producing high-quality educational com-
ponents of narrow scope. Component developers will
write their components to interoperate easily with
those of other vendors, rather than wasting efforts
replicating two-thirds of existing functionality just to
add one-third innovative functionality to their prod-
ucts. Proper software architectures will enable a
smooth componentization of existing applications,
providing their developers an incentive for transi-
tioning to a component model. Finally, content
providers will contribute to component repositories
by providing their materials in the form of active com-
ponent tools (such as spreadsheets, graphs, and sim-
ulations) rather than as canned multimedia elements
(such as movies or graphics).

To enable the future we envision, software devel-
opers and educators who have become application
designers must develop a shared communication lan-
guage to discuss component requirements. Discussions
among educators about the value and utility of the
component offerings will present clear metrics for
improving component quality. Finally, the economic
experiment of the Educational Object Economy
(http://www.eoe.org) will have succeeded: A range of
business models—from freeware to commercial soft-

ware—will draw on and return reusable components
to a blossoming marketplace of educational compo-
nents and activities.

WORKING TOWARD THE
VISION: LESSONS LEARNED

Our projects have struggled to realize aspects of this
vision, and along the way we’ve learned seven signif-
icant lessons. Each lesson applies to multiple projects,
and the description of each lesson reflects the contri-
butions of several of us. These lessons form the basis
for our group’s collective move toward a component
marketplace for education.

Use legacy applications as component authoring tools
Substantial challenges complicate the processes of

• developing a large library of interoperable com-
ponents (for example, one sufficient to cover the
K-12 mathematics curriculum), and

• encouraging educators and students to adopt
component-based products in place of familiar
monolithic applications.

Component development and life cycle mainte-
nance require engineering resources proportionate to
the number of intended components. During devel-
opment, each new component demands testing for
requirements and usability. Until the component
library reaches a critical mass—that is, presents wider
opportunities for reuse and new deployment than an
equivalent monolithic implementation—development
efforts will run in the red.7

In the classroom, educators and students have an
investment in traditional monolithic applications that
can bias them against adopting new technologies. In
this setting, introducing a new component to the over-
all component library can require a program of “evan-
gelism” and education to gain sufficient acceptance.
Similar challenges arise in transitioning any developer
community and user base to a component strategy.

In our projects, we attempted to limit the impact of
these obstacles by letting existing applications serve
as component-generating tools. In particular, we relied
heavily on two general-purpose mathematical model-
ing tools: The Geometer’s Sketchpad (Key Curriculum
Press) and AgentSheets (AgentSheets Inc. and Uni-
versity of Colorado, Boulder), which can export indi-
vidual models as JavaBeans. These modeling tools can
each produce a wide range of model instances, and
such instances are often at the right level of granular-
ity to serve as an individual library component. The
Geometer’s Sketchpad can construct arbitrary geo-
metric models that are dynamically malleable, subject
to author-specified geometric constraints. AgentSheets
helps create arbitrary interactive simulations, subject

Figure 1. Bridge Builder is an AgentSheets-generated simula-
tion for exploring bridge design.

to sequentially executed imperatives, which the sim-
ulation’s author specifies.

Bridge Builder, shown in Figure 1, is an example of
an educational simulation component generated by
AgentSheets. Bridge Builder allows students to play-
fully explore general bridge design issues from different
perspectives, including physics (forces) and architec-
tural history (Greek versus Roman approaches). One
task is to remove the maximum number of bricks from
the bridge without the bridge collapsing under a load
of cars driving over it. Educators can use Bridge Builder
in combination with other components to create a
richer learning experience.

Using legacy modeling applications to specify and
generate library components has several benefits over
developing each component from scratch. For one, edu-
cators have already established the pedagogic merits of
these tools. Over the past eight years, The Geometer’s
Sketchpad has become one of the most widely used and
respected software programs in middle school and sec-
ondary mathematics education. Though a more recent
innovation, AgentSheets has likewise received broad
critical acclaim, and the number of educators using it
is expanding rapidly.

This previous experience influenced educators’ ini-
tial interest and commitment to our component
efforts. With enhancements that output Java classes,
these modeling tools can become authoring tools that
can specify a new component and automatically gen-
erate the code. Furthermore, such tools can structure
the exported JavaBeans to comply with intercompo-
nent communication protocols even where the source
application does not: An AgentSheets simulation
applet can communicate data to a Java graphing com-
ponent even though the original AgentSheets simula-
tion did not incorporate JavaBeans communication.

Because these authoring tools handle the engineer-
ing aspects of component development, educators can
focus their resources on designing and specifying edu-
cational content. They can spend more time develop-
ing mathematical lessons and less time developing
software programs. Indeed, leveraging the installed
base of AgentSheets and Sketchpad users dramatically
expands the number of people who can create new
components within our framework. Educators don’t
also need to be programmers to add a new compo-
nent to the overall library. This coincidentally resolves
granularity issues—how much functionality to address
with a single component—by considering what sorts
of configurations current monolithic applications con-
sider a coherent assemblage.

A final advantage to the authoring-tool approach
is that individual components generated by a single
tool share a common user interface, which simplifies
the task of exposing students to numerous new com-
ponents simultaneously. In this way, authoring tools

enforce uniformity and consistency automati-
cally at the program level.

As developers of the authoring tools, we must
weigh the benefits of common user interfaces
against an individual application’s specific inter-
face requirements. Our approach lets us con-
sider this trade-off on a case-by-case basis. It
also permits development of custom compo-
nents from scratch if authoring tools cannot
adequately address specific needs.

Educators need cognitive support
to manage wiring complexity

In JavaBeans (like many other component models),
components interoperate by being “wired” together;
wires specify the paths along which data and control
can flow.8 In many respects, synthesizing software by
wiring components is analogous to defining associa-
tions among entities by modeling with notations such
as object modeling technique (OMT) or entity-rela-
tion diagrams. In these examples, the way these com-
ponents are used models the following relations (in
italics):

• a map component hosts agent components (or
agents move on map components);

• an agent component displays its current view in
a television component;

• a globe component synchronizes time and loca-
tion with a map component;

• a database component edits feature attributes of
a map component; and

• a master clock component distributes animation
ticks to other components.

In particular, our researchers have found traditional
analysis techniques useful for classifying associations
in which components participate. For example, inter-
component associations can be one-to-one, one-to-
many, many-to-one, or many-to-many—standard
relationships in classic relational database theory—
depending on their semantics and specific contexts. If
an individual component implements many types of
associations, it is important to clarify the conditions
under which those associations are valid.

However, we have found that two additional com-
plexities—which go beyond traditional analysis—
arise in wiring components.

Providing for dynamic analysis. First, components
are not always amenable to static analysis; indeed,
the capabilities and connectivity options for a com-
ponent may vary considerably depending on the con-
text and the component’s state. From a static analysis,
a component developer might determine some com-
ponent features that hold unconditionally over the
component’s lifetime. For example, a clock compo-

September 1999 5

Educators can
spend more

time developing
mathematical

lessons and less
time developing

software programs.

6 Computer

nent may always be able to provide the current time
in a simulation. A map component, however, may be
able to provide time information for a particular
locale, but only if the component is already attached
to a master clock. Thus, we need a more dynamic
analysis to determine whether the map component
can provide time information.

Extending this example, the map component could
provide additional data about a locale at a particular
time, but only if it is attached to an agent that indi-
cates a location. For example, if an agent component
is placed on a map, the map could provide informa-
tion, like a traffic report, which is indexed to the
agent’s time and location.

To handle the complexity of dynamic wiring, we
use techniques that give components the ability to
dynamically describe their current data manipulation
and connectivity capabilities.

JavaBeans provides a Reflection mechanism, which
design tools can use to discover the wiring design pat-
terns of a given component. The Reflection mecha-
nism, however, does not cope well with components
that dynamically change because Reflection uses a sta-
tic analysis of the methods that a component imple-
ments to determine its capabilities.

In one project, we used InfoBus to obtain a more
dynamic analysis. InfoBus allows a set of data pro-
ducers to broadcast the dynamic availability of data by
either name or type, and allows a set of data con-
sumers to search for data by name or type. Further,
InfoBus mediates the process of acquiring references
to data channels and releasing them when no longer
needed.

E-Slate, shown in Figure 2, is a proprietary mecha-
nism that dynamically assesses a component’s con-

nection capabilities and presents a user interface to
allow educators and students to make connections
among components that have compatible capabilities.9

In both E-Slate and InfoBus, standardized protocols
reduce an educator’s cognitive difficulty in using
dynamic interoperation capabilities.

Making wiring options clear. A second wiring com-
plexity concerns how tool developers make a com-
ponent’s wiring possibilities explicit to application
designers. Conventional design tools (such as
BeanBox) connect almost any component to any
other, but they require the educator to make every
connection manually. In real educational applications,
educators are easily overwhelmed by this flexibility
and the accompanying need to create complex wiring
diagrams for even relatively simple tasks. In response,
we have developed techniques to reduce the burden
associated with wiring; these include

• making component wiring capabilities explicit in
a consistent and unambiguous way by using com-
prehensible symbols or metaphors, such as puz-
zle pieces with colored pins;

• automatically producing default wiring, such as
connecting all time-driven components to a clock;

• aggregating translation capabilities into compo-
nents so they need less wiring for connections (for
example, incorporating plotters for several data
types into a graph component);

• guiding application designers through the wiring
process with templates for typical situations or
according to the components’ underlying semantics
(for example, guiding designers to connect a math-
ematical model to various candidate views); and

• automatically ensuring the correctness of wiring
diagrams.

Focus interoperability on domain
concepts and requirements

The various projects in Table 1 focus on K-12 math
and science learning, though some include history and
geography as well. For this subject matter, major break-
throughs in learning quality derive from the computer’s
ability to bring concepts to life through dynamic, visual
presentations.10 Thus, assembling components means
assembling simulations, visualizations, animations,
mathematical and geographical analysis tools, spread-
sheets, and computer algebra systems.

An important wiring issue involves linking multi-
ple representations so that a change in one represen-
tation is immediately reflected in another repre-
sentation. For example, if a student can alter the plot
of a function by dragging the cursor across it, the func-
tion’s algebraic and tabular representations should
change simultaneously.

Researchers in each of our projects have found it

Figure 2. An E-Slate
geography lesson
using logo (scripting),
database, canvas, and
map components.

necessary to go beyond the available interoperability
mechanisms to support dynamic interaction at the
desired level because

• file- or stream-based communications are too
slow for dynamic interfaces;

• the Common Object Request Broker Architecture
is too heavyweight for educational applications,
which in most cases aren’t distributed;

• the flexibility of Component Object Model/
ActiveX interfaces or Java Reflection puts too
much burden on application designers;

• one-way notification semantics of event models
such as JavaBeans are awkward for linking mul-
tiple representations; and

• standard scripting interfaces are too closely tied
to user interface or presentation actions, rather
than meaningful actions based on an underlying
conceptual model.

Instead, each project has implemented a form of
model-view-controller architecture on top of existing
standards. This architecture clearly separates a con-
ceptual model from its presentation. Object references
are shared by multiple views, and controllers can act
directly on the object’s public methods. In the
Educational Software Components of Tomorrow
(ESCOT) project, for example, we implemented a
model-view-controller architecture for mathematical
models on top of the InfoBus architecture.

However, one wiring architecture is not enough.
Intercomponent associations span a broad conceptual
range, and the underlying semantics vary accordingly.
In addition to the model-view-controller architecture,
which is ideal for dynamically linked representations,
some educational-component connections have event-
based semantics, and others have semantics based on
data flow or data sharing. The E-Slate project, for
example, implemented a custom communication
architecture based mostly on data flow semantics. We
thus seek ways to smoothly combine different wiring
semantics without overburdening either the compo-
nent developer or educator with too much complexity.

Support user programming for
just-in-time adaptation of components

In addition to the intercomponent issues, there are
also intracomponent issues. In the quickly growing
component-based software market, prefabricated
components often only partially fulfill the needs of
educators and students. Scripting languages or com-
ponent builders allow casual programmers to connect
components but stop short of letting them adapt com-
ponents to new requirements. The inability of com-
ponents to be adapted to new needs—sometimes in
elementary ways—can render them useless.

User-programmable component-generator
tools help application designers to adapt exist-
ing components. These tools incorporate pro-
gramming languages that let designers

• develop small components to fill gaps in
the standard component library,

• customize or modify a component’s behav-
ior to fit an unanticipated circumstance,

• connect components in situations where
the need for a common interface was unan-
ticipated, and

• add logic that integrates behavior across several
components that are often specific to a single
application.

Another approach that facilitates adaptation is a
framework of open sources in which a community
collects and cultivates components in a shared repos-
itory. The Educational Object Economy (http://www.
eoe.org) is currently the largest repository of educa-
tional Java applets. Many of the EOE’s applets enable
adaptation by including their Java source codes.
However, most educators and students do not have
the required skills, time, tools, or interest to modify
existing components at the Java source-code level.

Our solution is to use user-programmable tools that
elevate programming to the level of manipulating
problem domain concepts. The AgentSheets11 project
has developed several new user-programming para-
digms, such as graphical rewrite rules, which have
been successfully tested with casual programmers who
lack a traditional programming background.

E-Slate takes a different approach. It is based on
Logo, a high-level programming language derived
from Lisp, which has been popular among educators
for almost 30 years. E-Slate expands Logo into a full-
fledged component scripting language that can call
the public scripting interface defined by each compo-
nent. Specially designed tools provide another impor-
tant form of adaptation. These tools break
components into finer-grained subcomponents that
educators can comprehend, share, and reassemble.

In the Bridge Builder simulation component, bricks,
cars, and tunnels are subcomponents called agents.
Educators can use a Web-based forum called Behavior
Exchange (http://www.agentsheets.com/behavior-
exchange.html) to exchange such agents. Behavior
Exchange provides other kinds of building materials,
such as steel-based construction blocks, for the bridge.
Educators can download these agents and put them in
their simulation; they can also see how the agents are
programmed. The modified simulations can be
rewrapped as JavaBeans. This mechanism provides
educators control over components without the need
to create or modify Java programs.

September 1999 7

Prefabricated
components often
only partially fulfill

the needs of
educators and

students.

8 Computer

Iterate to determine component granularity
Defining a component’s boundaries so that it is a

reusable, meaningful building block is a difficult job:
Human cognition is very flexible in defining “objects”
on the spot according to personal interests and the
moment’s focus. So how can component developers
provide prefabricated objects that will be aligned with
the spontaneous needs of application designers? The
key issue is how to maintain a balance between two
extremes. On the one hand, components can become
too general and low-level, like the simple user interface
elements usually found in authoring tools. On the
other hand, components can become too feature-rich
and inflexible. To resolve this problem, component
developers need to identify an appropriate trade-off
for the application designer.

Our experience shows that the traditional linear
development cycle (requirements, specifications,
design, and implementation) is not sufficient for deter-
mining the appropriate trade-off. Needs are often not
apparent until educators play with a rough prototype
and comprehend the potential capabilities. Software
and curriculum, in particular, often co-evolve; as the
technology changes, educators’ ideas of what and how
students should learn change as well. An iterative
process of rapid prototyping in close synergy between
component developers and application designers

works best. The “Determining Component Granu-
larity and Connectivity” sidebar describes our two-
stage process for identifying correct component size.

Use translators and wrappers
to adapt existing resources

In any realistic application domain, component
developers lack the resources to create—from
scratch—all the components necessary to match a par-
ticular component framework. Instead, developers
will often start with legacy models that have inade-
quate communication modules or different commu-
nication protocols. However, there is often value in
combining such large-scale modules with each other
and other, smaller components.

To help build interoperable modules, Steve Ritter
and Ken Koedinger12 developed a translator, a small
component that component systems developers use to
make their own representational decisions. Once devel-
opers make these decisions, they can identify the shared
data types and specify translators to implement them.

Wrappers, another way to provide interoperability,
are similar in concept to translators. Whereas a trans-
lator adapts an existing communications protocol to
a desired standard, a wrapper provides a communi-
cations layer around a component so that it can com-
municate effectively with other components.

Determining Component
Granularity and Connectivity

Manolis Koutlis and Jeremy Roschelle

How can component developers iden-
tify the correct size of component building
blocks for a given domain? We have found
a two-stage process to be the best practice.

In the first stage, we start by collabora-
tively designing a prototype piece of soft-
ware with educators. Because educators
are not component engineers, we focus on
overall functionality in this design. But in
implementing the prototype, we attempt
to generalize it to a family of software that
is similar in functionality, characteristics,
and requirements. Criteria for decompos-
ing that family into components include:

• Stay close to the educator’s cognitive
processes and subject matter domains
(that is, objects should model familiar
entities, concepts, phenomena, rela-
tionships, and behaviors of the domain).

• Favor powerful, large-granularity

components that can fulfill a major
role in the educator’s concept of the
application.

• Component connectivity should give
educators some key advantages, but
not shift much programming burden
to them.

The goal of this stage is to help the edu-
cators reconceptualize their problem
domain in terms of components. Based on
a decomposition of the prototype applica-
tion, we design components and synthesize
an integrated whole that is close to the pro-
totype as originally specified. We then
demonstrate to educators how the compo-
nent kit can realize a family of applications.
If we’ve achieved the right conceptual level
and component granularity, educators will
begin to think in terms of the components
at hand, building previously unanticipated
configurations.

This first stage, however, is unlikely to
yield a component collection with exactly
the right levels of granularity and connec-

tivity. Thus, in a second stage we proceed
with a student-centered redesign, based on
the educators’ observational and partici-
patory studies, which use the component
kit to develop student learning activities.

In particular, as the educators apply
these components in a variety of proto-
typing situations, we observe the kinds of
flexibility they desire and will actually use,
the places where routine and repetitive
component configurations could be auto-
mated, and previously unidentified and
unmet needs. We allow this user-centered
analysis to drive realignment of the com-
ponent granularity and connectivity to
meet user needs. This often involves break-
ing some components into smaller parts,
adding some new components, introduc-
ing wizards and other tools to automate
routine configuration tasks, and redefin-
ing connectivity options to focus on the
actual connectivity demands. Thus, the
goal of the second stage is to tune the com-
ponent collection for maximum flexibility
and complexity in actual design use.

A commercial example of wrappers is the ability to
use a JavaBean as an ActiveX control and vice versa.
Wrappers can dramatically reduce an application
designer’s costs and risks in porting existing compo-
nents to a new standard. Because profit margins are
very thin in educational software, designers are more
likely to support a new component standard if they
can use a wrapper to make applications compatible,
which avoids the cost and risks of a rewrite.

Help users track objects across components
Efforts toward achieving plug-and-play component-

based software tend to address the need for a common
communication protocol or an application program-
ming interface. Where such efforts address data seman-
tics, the focus is usually on solving the problem of
sharing information between component applications.
However, we have found that for a component system
to remain comprehensible to educators and students,
key domain objects must retain their identity as they
move between representations and/or components.

Educators and students should be able to tell at a
glance which components present information about
the same domain object. Moreover, both groups often
need to understand how cause-effect relationships
propagate among components, that is, how a change
made to a domain object in one component affects a
view in another component. Persistence of identity, in
turn, requires coordination in how components pre-
sent domain objects to educators and students.

A shared standard for the visual presentation of
objects (relative to name, color, description, and icon)
or a means for objects to carry presentational infor-
mation could be necessary. Further research is needed
to identify strategies for making the identities and rela-
tionships of objects across a wide variety of compo-
nents obvious to application designers.

For component-based techniques to influence
these new software areas, the principal challenge
is moving the conception of component software

from a developer-centric viewpoint toward a domain-
expert-centric viewpoint. This involves not only tech-
nical considerations, but also addressing unresolved
obstacles in the market, at the user interface, and in
supporting an appropriate authoring culture.

We speculate that these issues are not unique to edu-
cation, but will resonate in other domains in which
requirements are hard to specify or are evolving
rapidly, and those in which nontechnical designers
have a major role in implementing the final product.
Despite the overall attractiveness of a componentware
vision, these domains will be risky markets for initial
component implementations.

An overall goal for future component software
research should be to reduce these risks. In particular,

research should look for ways to reduce the time
it takes a component marketplace to reach criti-
cal mass and the time it takes individual products
to benefit from adopting a component approach.

Some risks may be mitigated technically
through design frameworks that reduce the cost
of developing, understanding, and adapting
components. Managing other risks will require
close attention to economic and social structures
that foster reuse in a heterogeneous community
of small-scale product designers. ❖

Acknowledgments
We thank Ken Koedinger for reading early drafts

and providing suggestions.
E-Slate has been funded by projects IMEL, EC

DGXXII, Socrates 25136-CP-1-96-1-GR-ODL;
YDEES (EU Support Framework II, Greek Ministry of
Industry, Energy and Technology, General Secretariat
for R&D, Measure 1.3, Project 726); and Odysseus
(EU Support Framework II, Greek Ministry of
National Education and Religious Affairs).

AgentSheets was funded by the National Science
Foundation DMI-9761360, RED9253425, REC
9804930, and DARPA CDA 940860. The DARPA
CAETI program also funded Belvedere. ESCOT is funded
by NSF grant REC-9804930. JavaSketchpad has been
funded in part by NSF DMI-9561674 and 9623018.

This article presents the authors’ opinions and may
not reflect the funding agencies’ views.

References
1. J. Roschelle and J. Kaput, “Educational Software Archi-

tecture and Systemic Impact: The Promise of Compo-
nent Software,” J. Educational Computing Research,
Vol. 14, No. 3, 1996, pp. 217-228.

2. J. Roschelle et al., “Banking on Educational Software: A
Wired Economy Unfolds,” Technos, Vol. 6, No. 4, 1997,
pp. 25-28.

3. B. Henderson, The Components of Online Education:
Higher Education on the Internet, Univ. of Saskat-
chewan, Saskatoon, Canada, 1998.

4. J. Kaput, “Technology and Mathematics Education,”
Handbook of Research on Mathematics Teaching and
Learning, D. Grouws, ed., Macmillan Co., New York,
1992, pp. 515-556.

5. J. Roschelle, “Designing for Cognitive Communication:
Epistemic Fidelity or Mediating Collaborative Inquiry?”
Computers, Communication and Mental Models, D.L.
Day and D.K. Kovacs, eds., Taylor & Francis, London,
1996, pp. 13-25.

6. C. Rader et al., “Designing Mixed Textual and Iconic
Programming Languages for Novice Users,” Proc. 1998
IEEE Symp. Visual Languages, IEEE CS Press, Los

September 1999 9

Using a wrapper to
make applications
compatible avoids
the costs and risks

of a rewrite.

10 Computer

Alamitos, Calif., 1998, pp. 187-194.
7. R.L. Leach, Software Reuse: Methods, Models, and

Costs, McGraw-Hill, New York, 1997.
8. E.R. Harold, JavaBeans, IDG Books, Foster City, Calif.,

1998.
9. M. Koutlis et al., “Inter-Component Communication as

a Vehicle Towards End-User Modeling,” ICSE 98 Work-
shop on Component-Based Software Eng., 1998, http://
www.sei.cmu.edu/activities/cbs/icse98/papers/p7.html.

10. D.N. Gordin and R.D. Pea, “Prospects for Scientific
Visualization as an Educational Technology,” J. Learn-
ing Sciences, Vol. 4, No. 3, 1995, pp. 249-280.

11. A. Repenning and T. Sumner, “AgentSheets: A Medium
for Creating Domain-Oriented Visual Languages,”
Computer, Mar. 1995, pp. 17-25.

12. S. Ritter and K.R. Koedinger, “An Architecture for Plug-
in Tutoring Agents,” J. Artificial Intelligence in Educa-
tion, Vol. 7, No. 3-4, 1997, pp. 315-347.

Jeremy Roschelle is a senior cognitive scientist at SRI
International’s Center for Technology in Learning.
His research interests include educational software
design, math and science education, collaborative
learning, and video analysis methodology. He received
a PhD in cognitive science and educational technology

from the University of California, Berkeley. Contact
him at Jeremy Roschelle@sri.com.

Chris DiGiano is a research computer scientist at SRI
International’s Center for Technology in Learning. His
research interests include human-computer interaction,
informal learning environments, virtual learning com-
munities, and end-user modifiable software. He received
a PhD in computer science from the University of Col-
orado, Boulder. Contact him at chris. digiano@sri.com.

Manolis Koutlis is a senior engineer-researcher at the
Computer Technology Institute, Patras, Greece. His
research interests are educational technology, com-
ponent-oriented software engineering, and visual pro-
gramming systems. He received a BS from the
Computer Engineering and Informatics Department
of the University of Patras and is currently a PhD stu-
dent. Contact him at koutlis@cti.gr.

Alexander Repenning is a computer science professor
at the Center of LifeLong Learning & Design at the
University of Colorado, Boulder; he is also the direc-
tor and a founder of AgentSheets Inc. His research
interests include end-user programming, computers
in education, agent-based simulations, component
software, and visual programming. He received a PhD
in computer science from the University of Colorado.
He is a member of the IEEE, the ACM, and the Asso-
ciation for the Advancement of Computing in Edu-
cation. Contact him at ralex@cs.colorado.edu.

Jonathan Phillips is a doctoral student at the Univer-
sity of Colorado, Boulder. He is also a senior pro-
grammer for AgentSheets Inc. His research interests
are end-user programming and communities of learn-
ing. He received a BS in computer science from the
University of Colorado. Contact him at phillipj@col-
orado. edu.

Nicholas Jackiw is the chief technology officer of KCP
Technologies Inc. His research focuses on interactive
visualization technologies for mathematics education.
Contact him at njackiw@keypress.com.

Dan Suthers is an assistant professor of information and
computer sciences at the University of Hawaii at Manoa.
His research interests are in applying human-computer
interaction and artificial intelligence perspectives to
designing software that synergizes with minds and social
systems, with a current focus on representational tools
that support collaborative learning. He received a PhD
from the University of Massachusetts. He is a member
of the IEEE, the ACM, the Cognitive Science Society,
and the International Artificial Intelligence in Educa-
tion Society. Contact him at suthers@hawaii.edu.

